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Abstract

[395] Mereology, the theory of parts and wholes, is sometimes used as
a framework for categorisation because it is regarded as ontologically
innocent in the sense that the mereological fusion of some entities
is nothing over and above the entities. In this paper it is argued
that an adequate answer to the question of whether the thesis of
the ontological innocence of mereology holds relies crucially on the
underlying theory of reference. It is then shown that upholding
the thesis comes at high costs, viz. at the cost of a quite strong
logical background theory or at paradoxical ways of predicating and
counting.
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tification, plural predication

1 Introduction

Categorisation is a fundamental operation and is based only on more fun-
damental theories of abstraction: formally speaking categories may be con-
sidered to be sets, classes, collections, fusions, aggregations, etc. But if cate-
gorisation is based on such an abstraction one may wonder whether such a
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basis is ontologically harmless—fine shaved as Ockham—or ontologically
quite heavily laden—like Plato’s beard. Mereology, the theory of parts and
wholes, is often taken to be an adequate framework for [396] categorisa-
tion since it is less heavily laden than set theory. But some metaphysicians
and ontologists think that it is still too heavy (cf., e.g., Bohn 2009, p.27). In
particular the so-called principle of unrestricted fusion or composition is under
attack, since it allows the fusion or composition of any entities. The critique
is, that “unrestricted [fusion or composition] appears to go too far, for [. . .
it] also commits the theory to the existence of a large variety of prima facie
implausible, unheard-of mereological composites—a large variety of ‘junk’
in the good old sense of the word” (cf. Varzi 2014, sect.4.5). It does not
make one wonder that from such a point of view demands of restricting
the fusion or composition principle to operations with outcomes that are in
a natural way categorisable evolved (cf., e.g., Bohn 2009).

But there is another way out of the problem of “junk” entities through
mereological abstraction: One might claim that fusions and compositions
are nothing over and above the entities the abstraction operation is per-
formed on. According to such a thesis on the ontological innocence the fu-
sion or composition of some entities x and y is identical with x and y; and
since identity is a logical relation, the thesis whereby mereology is ontolog-
ically innocent is just the claim that “generating” entities with the help of
the mereological fusion or composition operation is a special kind of doing
logical abstraction.

In a recent collection the debate about the thesis of composition as iden-
tity was relaunched (Cotnoir and Baxter 2014). Whereas, e.g. (Sider 2014)
investigates consequences of this thesis for the framework of plural quan-
tification, this paper investigates the question of whether this approach to
the problem is plausible in the framework of plural predication. We will
show that an adequate answer to the question of whether the thesis of on-
tological innocence of mereology holds relies crucially on the underlying
theory of reference. Given a singular theory of reference—as, e.g., pro-
vided in standard formal semantics—one can easily show that the thesis
fails, but if one assumes a plural theory of reference—as, e.g., introduced
in 1929 by Stanisław Leśniewski, the founder of mereology—there is a way
to make some sense of the thesis. Nevertheless we will see that upholding
the innocence thesis actually comes at high costs: (i) accepting full plural
quantification theory as logic or (ii) accepting some kind of gavagaian theory
of reference or (iii) accepting paradoxical ways of counting.

In our argumentation we will first describe two common approaches
to ontological innocence (section 2), namely the identification approach,
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claiming that a whole is identical with its parts, and the counting approach,
claiming that a whole is the many parts counted as one thing. Afterwards
we will discuss an answer to this question and problems of it in the frame-
work of plural quantification theory (section 3). Subsequently we will dis-
cuss it in the framework of plural predication by introducing four different
theories of predication (section 4) and showing that stating the innocence
thesis comes at high costs both, within the identification (section 5) and the
counting approach (section 6). We will conclude by providing a short sum-
mary of the results and the consequences one may draw from them (section
7).

Note that under ‘mereology’ we understand here only the extensional
theory of the parthood-relation in contradistinction to an intensional one
as, e.g., provided in (Simons 1987). The minimal requirement we assume
for the parthood relation is that it is a partial order and that a fusion or com-
position operation is well defined on it, i.e. [397] the existence and unique-
ness requirements of such a definition are satisfied. Regarding the opera-
tion we will restrict our investigation to the finite fusion or composition of
entities, expressible with a binary operation sum. This restriction is not es-
sential to our argument on the ontological blameworthyness of mereology
since our result for the finite case also transmits to the infinite one (if finite
fusion or composition is already ontologically blameworthy, then of course
also finite or infinite).

2 Two Theses of Ontological Innocence

Summing up the discussion of ontological innocence of mereology at least
partly, one can distinguish two main approaches: sometimes authors stress
more the problem of identifying composed entities and sometimes they
emphasise more the problem of counting them. Paradigmatic for the first
approach is (Lewis 1991). An excellent example for the second approach
is (Baxter 1988b). Of course both approaches are closely connected since
counting depends on identification. Classical logic allows us to express this
fact easily: We can say, e.g., that there are exactly two entities, if there are
non-identical entities x and y and if every entity of the universe of discourse
is identical with x or y;

Nevertheless we are going to hold the identification and the counting
approach separated, because this separation allows us a more sophisticated
and illuminating discussion of theories on the innocence thesis.

The first approach to the thesis of ontological innocence of mereology is
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not primarily concerned with counting individuals, but directly with iden-
tifying them, especially with identifying compositions. Puzzling claims are
of the kind:

“The fusion of the xs just is the xs.” (Lewis 1991, p.81)

“The xs just are the fusion of the xs.” (Lewis 1991, p.81)

“The ‘are’ of composition is, so to speak, the plural form of the ‘is’ of
identity.” (Lewis 1991, p.82)

“Mereological wholes are identical with all their parts taken together.”
(cf. Armstrong 1997, p.12)

Defenders of the thesis of ontological innocence of mereology within the
identification approach claim that the composition of two entities is iden-
tical with the entities (cf. the citations above). Opponents of this thesis
deny this claim and argue as follows (cf. Inwagen 1994; and similar Yi 1999,
p.142, p.146):

1. Assume x ̸= y and let z be the composition of x and y: z =
sum(x, y).

2. According to defenders of the innocence thesis it holds that
the composition is identical with its parts, so assume z = x
and z = y.

3. The relation of being an improper part (⪯) is reflexive, so it
holds z ⪯ z.

4. As far as x is different from y (1.), the composition of x and
y, that is z, is neither an improper part of x nor of y: z ̸⪯ x
and z ̸⪯ y.

5. But by the principle of indiscernibility of identicals it follows
from 2. and 3. that z ⪯ x and z ⪯ y.

[398] Inasmuch as the derivations of 3. and 4. are grounded on basic mere-
ological facts and inasmuch as one accepts the mereological composition
principle supposed in 1., one has to blame assumption 2. for the contradic-
tion of 4. and 5.. Opponents of the innocence thesis ascribe, as indicated in
2., this assumption to defenders of the thesis. But this ascription seems to be
not very benevolent: it is interpreting a disputant in a not very interesting
way, namely as claiming something which contradicts basic mereological
facts.
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One may ask for a more benevolent interpretation of the claim of the de-
fenders of the innocence thesis: According to a more benevolent interpre-
tation one does not take the second occurrence of ‘and’ in ‘The composition
of x and y is identical with x and y.’ to be primary, but the ‘identical with’.
So, instead of reconstructing this claim as ‘sum(x, y) = x & sum(x, y) = y’,
it seems to be more benevolent and by this correct to reconstruct it in some
way like ‘sum(x, y) = (x & y)’. But what does it mean to build up a single
term with the help of ‘&’—we are used to find ‘and’ between sentences or
elliptic formulations within sentences like ‘Tris and Iseult are human be-
ings.’? Well, this is not the whole story! Take as example the sentence ‘Tris
and Iseult are in love.’. One can rephrase it as ‘Tris is in love and Iseult is
in love.’ or as ‘Tris is in love with Iseult.’. In the first case the ‘and’, in the
second case the ‘are in love’ is taken to be primary. Instead of the unary
predicate for being in love we use in the second case a more complex one,
the binary predicate for being in love with someone.

We have given an analogy now, but it is not fully established because we
need to know how to construct an analogue to the rephrase of the second
case for our compositional claim. What is the more complex form of the
binary predicate for being identical? It seems to make no sense to introduce
analogously to the ‘is in love’ and ‘is in love with’ case a 3-ary predicate for
identity, because the only sense we can make of such an expression is the—
by definitions redundant—concept of being identical with something that
is identical with something. But what else gives us a more sophisticated
structure? The answer seems to be straightforward, if one takes the work
of the main defender of the innocence thesis, David Lewis, seriously: It is
to do plural referring (cf. Lewis 1991, pp.62ff). So with the term right to the
identity sign in our reconstruction of the compositional claim we refer not
only to x and also not only to y, but to x and y.

There are different ways to implement plural referring into formal sys-
tems. One way is to allow quantification with so-called plural variables, as
Lewis, following George Boolos (cf. Boolos 1984), suggests. Another way,
which is more in the tradition of the founder of mereology, Leśniewski, is to
do plural predication. In this paper we will just shortly discuss the former
option in the next section and then follow up the line of the later one; this
strategy bears the features that our discussion can be easily embedded into
classical logic and it allows us also to make easily comparisons of different
mereologies.

Before we come to the formal investigation, we give just some intuitions
to plural predication that allow us to state the innocence thesis within the
identification approach clearly. Classically seen, predication, i.e. singular
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predication, with the help of the ‘is’ in ‘Iseult is beautiful.’ is just the action
of stating that the entity referred to by ‘Iseult’ is identical with one of the
entities that are beautiful. Contrary to this, one [399] way of doing plu-
ral predication is to state that each entity referred to by ‘Iseult’ is identical
with one of the entities that are beautiful. Since ‘Iseult’ is usually used for
referring to exactly one entity, doing classical predication or doing plural
predication makes no difference here. But things disperse if we consider
a sentence similar to our ‘and’-case above: ‘Tris and Iseult are beautiful.’
is classically to be understood as: the entity referred to by ‘Tris’ is one of
the entities that are beautiful and the entity referred to by ‘Iseult’ is one
of the entities that are beautiful. In doing plural predication it can be in-
terpreted as: each entity referred to by ‘Tris and Iseult’, that are Tris and
Iseult, is identical with one of the beautiful entities. Later on we will in-
troduce different theories of predication with the help of axioms for the
sign ‘ε’ (which was used by Leśniewski in order to formalise the polish
predication-particle ‘jest’). But for the moment it is enough to read ‘ε’ as
representation of the ‘is’ of predication in the sense we just described. Fol-
lowing this intuition, we can formalise the claim that an expression ‘z1’
refers exactly to the entities x and y by claiming that x is a z1 and y is a
z1 and that all entities that are z1, are x or y. So our auxiliary expression
above (that is ‘(x & y)’) can be replaced by ‘z1’, if we assume that z1 is the
z for which it holds: xεz & yεz & ∀z2(z2εz → z2εx ∨ z2εy). With the help
of this pre-formalism we are able to state the innocence thesis within the
identification approach more clearly:

OII A mereology M is ontologically innocent in the identifica-
tion approach iff M∪
{∀x∀y∀z(sum(x, y) = z ↔ (xεz & yεz & ∀z1(z1εz → z1εx ∨
z1εy)))} is consistent.
Thesis: Mereology is ontologically innocent in this sense.

In a nutshell: defenders and opponents of the innocence thesis within the
identification approach state that the composition operation of a mereology
M is ontologically innocent, if M is compatible with the claim that the com-
position of some entities x and y is identical with x and y (plurally referred
to) and that is to say that mereology is ontologically innocent, if it makes
any sense to claim that the composition operation of mereology (sum) is a
harmless way of referring plurally.

Let us now come to a characterisation of the innocence thesis within the
counting approach! Here one tries to solve puzzling claims of the kind:
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“The whole is the many parts counted as one thing.” (cf. Baxter 1988a,
p.578; and Lewis 1991, p.83)

“If you draw up an inventory of reality [. . . ], it would be double
counting to list the fusion of the xs and also list the xs.” (cf. Lewis
1991, p.81)

“While looking at one and the same external phenomenon, I can say
with equal truth both “It is a copse” and “It is five trees”, or both
“Here are four companies” and “Here are 500 men”. Now what
changes here from one judgement to the other is neither any individ-
ual object, nor the whole, the agglomeration of them, but rather my
terminology.” (Frege 1960, §46, p.59); citation due to (Cotnoir 2014,
p.4)

Defenders of the innocence thesis within the counting approach claim that
counting all uncomposed entities within a mereological universe leads to
the same result as [400] counting all entities within that universe (cf. Baxter
1988b, p.200). Opponents of the thesis claim that counting of uncomposed
entities leads to a different result as counting all entities, if there are at least
two different uncomposed entities at all (cf. Inwagen 1994, p.213; and Yi
1999, p.142). So, both say that mereology is ontologically innocent if it does
not influence counting and that is to say that it is compatible with all count-
ing results. If we take ‘A’ as a predicate for characterising uncomposed
(atomic) entities, we can formulate this claim in the following way:

OIC A mereology M is ontologically innocent in the counting ap-
proach iff for every n ≥ 1 M ∪ {∃n

nxA(x)} ∪ {∃n
nxx = x} is

consistent.
Thesis: Mereology is ontologically innocent in this sense.

So, assuming the existence of n atomic entities within a universe and start-
ing up the abstraction machinery of an ontologically innocent mereology
does not exceed the boundaries of the universe. The claim, e.g., that ac-
cording to a mereology M the composition of two entities exists, does not
dispense ontological innocence from M. Only the additional claim that ac-
cording to M the composition is a different third entity characterises M as
ontologically blameworthy, regardless if there are unconditioned existen-
tial assumptions (about a zero atom etc.) or not.

Two remarks seem to be helpful for understanding this thesis. Firstly,
we set up the condition that n ≥ 1, because ∃0

0 in ∃0
0xφ[x], contextually de-

finable as ∃x(x ̸= x & ∀y(φ[y] ↔ y = x)), is invalid in classical logic. Note
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that this formula is contingent in free logic and that exactly this difference,
viz. to state contingently ∃0

0xx = x, is mostly stressed as the non-logical
ontological blameworthiness of classical logic by the representatives of free
logic. Nevertheless we ignore this detail in our stipulation for reasons of
simplicity.

Secondly, according to our use of language an infinite mereology, that
is a mereology with some axioms of countable infinity and also some nom-
inalistic mereologies, e.g. a mereology with the nominalistic principle of
Nelson Goodman (cf. Goodman 1956, sect.2), “no distinction of entities
without distinction of content” or, even shorter: “no creation without in-
dividuation”, are ontologically blameworthy: the former inasmuch as such
a mereology would be inconsistent with every finitary claim; the later inas-
much as a nominalistic mereology in the sense of Goodman is only con-
sistent with the claim of the existence of individuals; and this is to claim
that exactly n = 2a − 1 entities exist, given that a uncomposed individuals
exist. Again, our stipulation is discussable regarding adequacy, but for the
purpose of our paper we can leave such a discussion aside by excluding
infinite and nominalistic mereologies from our domain of discourse.

Furthermore, it should be mentioned that the literature on the inno-
cence thesis or the thesis of composition as identity is rapidly growing. Sev-
eral different innocence theses are discussed in that literature. It is an aim
of this paper to consider mainly plural predication and by this, stick to
standard first-order logic (FO) as background theory, whereas most other
investigations start directly from the theory of plural quantification. E.g.
in (Spencer 2013, p.1178) the so-called strong composition as identity thesis
is discussed which claims that (necessarily) y is the composition of the xx
(plural variable) iff xx = y. Although in the next section we are going to
briefly discuss innocence theses in such a framework, we will stick mainly
to the theses [401] formulated above, having primarily plural predication
and not plural quantification (reference) in mind. The innocence theses
discussed here should shed some light on the previously undiscussed pos-
sibility of understanding composition as identity.

We now begin our exact discussion of the innocence theses. First we
will discuss shortly an approach to the innocence theses by help of plural
quantification. Then we will go on with theories of plural predication, ex-
pand them in a second step by mereological definitions and axioms, and
finally discuss their compatibility with the innocence theses.
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3 Plural Quantification

Lewis himself suggested using the framework of plural quantification for
defining mereological operations (cf. Lewis 1991, sect.3.2). To sum up the
result regarding plural reference by plural quantification, one can say that
the innocence theses hold if one accepts plural first-oder logic (PFO) as
logic. PFO is, at first glance, a weak extension of standard first-order logic
(FO) in the following way (cf. Linnebo 2003, sect.1):

• The vocabulary of FO is extended by the plurally refering variables
xx, yy, zz, . . . and the two-place symbol ‘⊏’ (to be read as ‘. . . is one
of the . . . ’; we take ‘⊏’ here just to abbreviate one specific descriptive
two-place relation-symbol of FO).

• The set of language formation rules of FO is extended by: If φ is a for-
mula and xx occurs freely in φ (henceforth: φ[xx]), then also ∀xxφ[xx]
and ∃xxφ[xx] are formulae.

• The set of axioms of FO is extended by the following axioms PFO1–
PFO6.

First, two axiom schemata on plural quantification analogous to the one of
singular quantification:

PFO1 ∀xxφ[xx] → φ[xx/yy]

PFO2 φ[yy] → ∀xxφ[yy/xx] (where φ[yy/xx] = φ[yy])

Then an axiom and an axiom schema for the identity between plurals (this
characterisation is similar to (Spencer 2013, p.1179)):

PFO3 ∀xxxx = xx

PFO4 ∀xx∀yy(xx = yy → (φ[xx] ↔ φ[xx/yy]))

Then an axiom schema on the non-emptyness of plural reference:

PFO5 ∀xx∃y y ⊏ xx

And finally the plural comprehension axioms instantiating the following
schema—and stating the possibility of plural referring by non-empty com-
plex properties:

PFO6 ∃yφ[y] → ∃xx∀y(y ⊏ xx ↔ φ[y])
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Now, it is just a small exercise to see that mereology can be embedded eas-
ily into PFO: One might define a mereological overlapping-relation □ as
follows:

PFO7 xx□yy ↔ ∃z(z ⊏ xx & z ⊏ yy)

[402] Since it is a theorem of PFO plus the definition above that:

T1 ∀xx∀yy∃1
1zz∀zz1(zz1□zz ↔ (zz1□xx ∨ zz1□yy)) (∃1

1□: PFOQED)1

One can define a mereological operation for composition:

PFO8 SUM(xx, yy) = zz ↔ ∀zz1(zz1□zz ↔ (zz1□xx ∨ zz1□yy))

And for this composition-operation it holds that it is ontologically harmless
in the sense that the composition of the xxs and yys is just the (xx and yy)s:

T2 ∀xx∀yy∀zz(SUM(xx, yy) = zz ↔ ∀x(x ⊏ zz ↔ (x ⊏ xx ∨ x ⊏
yy))) ([ε/⊏]–modified OII: PFOQED)

It is also innocent in the sense that it does not increase the number of el-
ements in the domain of discourse. So, if there are n things that are one
of the xxs, and if there are m things that are one of the yys (without being
also one of the xxs), then there are also only n + m things that are one of the
(xx and yy)s—in case all things are one of the xxs or yys, the total number of
things is n + m:

T3 ∀xx∀yy((∃n
nx x ⊏ xx & ∃m

my(y ⊏ yy & y ̸⊏ xx)) ↔ ∃n+m
n+mz z ⊏

SUM(xx, yy)), furthermore: ([A/⊏]–modified OIC: PFOQED)

T4 ∀xx∀yy((∃n
nx x ⊏ xx & ∃m

my(y ⊏ yy & y ̸⊏ xx) & ∀x(x ⊏
xx ∨ x ⊏ yy)) → ∃n+m

n+mz z = z ([A/⊏]–modified OIC: PFOQED)

Whether this way of abstraction is de facto ontologically harmless depends
on the logical status of PFO. It was Boolos who first argued for the logicality
of this framework and who also showed that an interesting part of second-
order logic, namely the monadic part of it, can be interpreted in a more or
less harmless way by allowing for plural reference (cf. Boolos 1984).

Critique against such a point of view is widespread. One of the
strongest opponents is Charles Parsons, who extended Willard van Orman

1We are considering several systems of plural reference in this paper. In order to make
transparent which consequences follow from which system, we always state in brackets
the systems according to which a theorem is valid. ‘QED’ refers to a sketch of a proof in the
appendix.
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Quine’s criterion for figuring out a theory’s existential assumptions: “To Be
is to be the Value of a Variable” (cf. Quine 1966, §37) in a way opposing di-
rectly Boolos’ “To Be is to be a Value of a Variable (or to be Some Values of
Some Variables)”: Taking Quine’s criterion for FO and expanding it to PFO
does not lead to Boolos’ interpretation, according to Parsons, but to a com-
mitment of plural entities or collections, since the quantifiers of PFO range
over such objects (cf. Parsons 1982). It is well known that the adequacy
of Parsons’ and Boolos’ extension of Quine’s original criterion depends on
the background- or meta-theory one has in mind: If the meta-theory allows
also for plural referring, then Boolos can uphold his interpretation by plu-
rally referring to objects (of only seemingly collections). If not, then one has
to join Parsons.

Another—very recent—critique against plural quantification as a tool
for achieving ontological innocence stems from Graham Priest. Priest ar-
gues that quantifying in intensional contexts—especially into contexts of
intentions—is prima facie singular quantification since “intentionality is
normally defined as a mental state that is [403] focused on an object” (cf.
Priest 2014, chpt.6.10). So, e.g., it makes perfect sense to only state that
one is thinking of the even numbers if one assumes a framework of singu-
lar quantification, but not of plural quantification since “one cannot have
an infinite number of mental foci” (cf. Priest 2014, p.95). Regarding con-
texts with intentions he thinks that one cannot get rid of non-plural fusion
because one has to interpret such statements as statements about single ob-
jects (of intention), i.e. fusions that one singularly refers to (cf. Priest 2014,
p.96).

Priest himself proposes a solution to the problem of unrestricted compo-
sition by pardoxical identification as follows:

1. He takes monadic second order paraconsistent logic (logic of para-
dox: LP) and defines a first order relation of identity by Leibniz’ law.

2. Due to the non-transitivity of the paraconsistent biconditional, LP-
identity (=LP) turns out to be reflexive and symmetric, but not tran-
sitive.

3. Then Priest explains the unity of entities of a theory by expanding
it to a so-called “gluon-model”. The idea is that entities are unified
by so-called “gluons”, i.e. objects that have contradictory properties
(being an object and being none; being part of a unity and being not
part of it). With such objects one can, according to Priest, then try to
unify an object by paradoxical identification:
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• Take, e.g., a theory T with a domain D = {x, y, z} where it holds
that x =LP SUM(y, z). Then one can unify x in Priest’s framework
by identifying it with its parts in an expanded gluon-model:

• TG with DG = {x, y, z, g}, where g is a gluon, glueing x and y
together as well as x and z. The explanation of the unity of x
with y and z starts no infinite glueing-regress (asking for further
gluons g′, g′′, glueing x and g and g and y via g′ and x and g
and g and z via g′′ together) since g is also considered to be no
object and by this also to be no part of x that would be in need
of an explanation for glueing. Within TG it holds that (due to
non-transitivity of LP-identity):

– x =LP g=
LP

z

=LP y

– But still x ̸=LP z ̸=LP y
So, within this framework a fusion x is of course not identical
with each single part y and z, but with the parts as a whole, i.e.
the gluon that binds y and z together to x.

• Priest also proves an important result for his “theory of gluons”:
The expansion is conservative since all theorems of T are also
theorems of TG (cf. the conservation theorem in Priest 2014,
chpt.2.10, especially 2.10.4).

The paraconsistent approach of Priest might be considered as a generalised
solution to several semantic paradoxes (liar, predication, etc.) that also
finds its application in the problem of unrestricted composition. Neverthe-
less, especially in its application to mereology, it is proven to be inflationary
in the sense that all objects turn out [404] to have contradicting properties
(cf. Casati and Fujikawa 2014, p.503). It is also a very unorthodox approach
whose logical framework appears to some as “seriously weird, bizarre and
pathological [because it] doesn’t allow conditional proofs, [. . . ] it not only
tolerates, but is, inconsistent, and [. . . ] it requires non-standard models”
(cf. Pelletier 2015, p.825).

Regardless of the stance one takes here and also in the case of Parsons’
argument, perhaps the most important critique against the “logical status
of the theory of plural quantification” stems from Øystein Linnebo, who
claims:

Large parts of this theory can, without serious difficulties, be
regarded as purely logical. This holds of the tautologies, the
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axiom that says that pluralities are non-empty, and the natural
deduction rules [here: PFO1–PFO5]. The only serious worry
concerns the logical status of the plural comprehension axioms
[here: PFO6. . . . ] The claim that all plural comprehension ax-
ioms are logical truths is a very strong one. In particular, this
claim should not be confused with the weaker claim that the
plural comprehension axioms are true [. . . which] is indeed
rather plausible. (cf. Linnebo 2003, p.75)

Linnebo provides a convincing argument against the logicality thesis of
PFO by showing that PFO with non-distributive predication is theoreti-
cally very strong inasmuch as a bulk of set-theoretical principles can be re-
constructed in non-distributive PFO. Non-distributive predication is pred-
ication of properties to valuations of plural variables xx, . . . which is not
reducible to predication of properties to valuations of individual variables
x, . . . (cf. Linnebo 2003, p.79). So, if one can show for an open formula
φ[xx] that within the theory under consideration φ[xx/x] is equivalent to
∀x(x ⊏ xx ↔ φ[xx/x]), then the predication of φ to the valuation of xx is
distributive.

As Linnebo concludes, due to the strength of PFO with non-distributive
predication it seems so that it cannot be considered as purely logical.

As the definitions PFO7 and PFO8 on overlapping and SUM show, our
embedding of mereology into PFO presupposes non-distributive predica-
tion. Since SUM is defined for plurals via □ and the latter is also defined for
plurals via ⊏, the substitution of x for xx in SUM(xx, yy) = zz would bring
about an ill-formed expression containing ‘⊏ x’ (even if one makes tech-
nical sense for individual variables flanking ⊏ it is to be supposed that no
innocence thesis will hold). A much more general argument of Theodore
Sider shows that an identification of the composition (referred to singu-
larly) with its parts (referred to plurally) enforces in relevant cases non-
distributivity (cf. Sider 2007, sect.3.1, especially p.8). Sider’s innocence the-
sis (cf. Sider 2007, p.8) might be levelled down to the binary-SUM-case as
follows—we also keep plurals and individuals in identity statements sepa-
rated:

Strong composition as identity:
∀xx∀yy∀zz(∀x(x ⊏ zz ↔ (x ⊏ xx ∨ x ⊏ yy)) → SUM(xx, yy) = zz).

Strong composition as identity is just one direction of the innocence the-
sis/theorem T2. As mentioned above, due to language restrictions our
formulation differs from that of Sider in that he refers to the composition
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singularly (with an individual variable) and we do so plurally (with a plu-
ral variable). Still, Sider’s non-distributivity argument [405] also transmits
to our embedding of mereology into PFO: For all cases where φ[xx], xx = yy
and at least one y ⊏ yy is ∼ φ[xx/y] then T2 (“superstrong composition
as identity”—(cf. Sider 2007, p.9)) enforces non-distributivity of φ. As an
example take figure 1, where xx and yy contain all the same entities, just dif-
ferently arranged. Also suppose that all the assumptions mentioned before
hold and φ is to be interpreted as ‘. . . is rectangular’. Now suppose dis-
tributivity of φ. Then one can correctly infer φ[xx/x1] as well as φ[xx/x2].
By T2 we get xx = sum(xx1, xx2) = sum(yy1, yy2) = yy (take exactly x1 ⊏ xx1,
x2 ⊏ xx2 etc.). By PFO4 (substitutivity of plural identicals) we can also cor-
rectly infer φ[yy]. But, again by distributivity of φ, we can infer incorrectly:
φ[yy/y1] as well as φ[yy/y2]. Hence φ cannot be distributive.

xx

xx1

xx2
yy

yy1
yy2

Figure 1: Example of enforcing non-distributivity by OII

Regarding our embedding it generally holds that the innocence theses
enforce non-distributivity in most of the cases. And since non-distributivity
is not guaranteed to be purely logical/ontologically harmless, our embed-
ding of mereology into PFO is also not guaranteed to be purely logical, i.e.
ontologically harmless.

One might think that there are more general ways of plurally referring.
In the rest of the paper we will discuss this question with respect to theories
of plural predication. We will show that such an alternative approach to the
theses of ontological innocence also lacks plausibility.

4 Plural Predication

As we have already mentioned, there are different forms of predication,
that is: different, at least partly, adequate interpretations of the ‘is’ of pred-
ication of our natural languages. In the following we will elaborate four
more or less common theories which allow us to demonstrate that one has
to give different answers to the question whether the thesis in OII or OIC
holds, depending on the underlying theory of predication.

We begin with an axiom that is supposed to be an axiom of all four
theories. Formally speaking it is just an abstract version of the axiom of
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extensionality of set theory based on FO without identity. We use it here
because it allows us to build up easily a theory of identity based on predi-
cation only:

AP0 ∀x∀y(∀z(zεx ↔ zεy) → ∀z(xεz ↔ yεz))

Both, a nominalistic as well as a platonistic interpretation of AP0 seem to be
acceptable. The later by interpreting ‘ε’ set theoretically as element relation.
The former by holding that if all entities that are one of x are also one of y
and vice versa, then each of x is also one of those entities that each of y is
one of and vice versa.

Let us now come to the first theory of predication, characterising ‘ε’
with the help of the following axiom:

AP1 ∀x∀y(xεy ↔ x ∈ y)

[406] As one can see, AP1 serves for the usual interpretation of ‘is’ in for-
mal languages, provided we assume that for ‘∈’ hold exactly all usual set
theoretical axioms, specifically those of Zermelo-Fraenkel set theory. To say
that Iseult is beautiful is according to AP1 modelled by saying that Iseult
is a member of the set of all entities that are beautiful. Obviously for this
form of singular predication (ε) hold all theorems of set theory (∈).

Of course some people will counter that a theory based on AP1 cannot
be esteemed as a mereology. But despite the fact that Lewis counts his ap-
proach of constructing set theory on the basis of the parthood relation, the
composition operation and the primitive operation of building up single
sets as an approach within the mereological programme (cf. Lewis 1991,
chpt.4), we stand in for the view that the set theoretical framework may be
also part of a mereology. That is especially to say that one may not only
build up mereologies within a syntactical logical framework, e.g. within
a calculus of FO, but also within a semantic logical framework, that is set
theory.

The second theory of predication we introduce is a part of Leśniewski’s
theory of predication and consists besides AP0 of the following axiom (for a
much more elaborated investigation of Leśniewski’s theory of plural pred-
ication and a bibliography see, e.g., (Simons 1981)):

AP2 ∀x∃y yεx & ∀x∀y(xεy ↔ (∃z zεx & ∀z1∀z2(z1εx & z2εx →
z1εz2) & ∀z(zεx → zεy)))

The second conjunct of AP2 is the main axiom of Leśniewski’s theory
of predication, called ‘Ontology’ (cf. Betti 2010, p.311; and Ridder 2002,
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sect.1.2). There are two further axioms of Leśniewski’s theory, whereof AP0
is the only consequence we need here. We have added the first conjunct,
because we are going to talk only of entities that exist in fact.

Leśniewski thought that his theory of predication captures all relevant
features of the latin expression ‘est’ or the polish predication-particle ‘jest’.
In agreement with his theory it holds that if someone states that Iseult is
beautiful, then she states also that there is an entity that is Iseult, that every
entities that are Iseult are each other and that every entity that is Iseult is
one of the entities that are beautiful. So, according to him it is adequate
only to state of exactly one entity that it is also one of some other enti-
ties. The first conjunct may be called ‘existence condition’, the second one
‘uniqueness condition’ and the third one ‘condition of inclusion’. One can
easily construct a set theoretical semantics for ‘ε’ which is adequate with
respect to AP2, if one interprets ‘ε’ as single inclusion (x 1⊆1+ y iff x ⊆ y
and |x| = 1). This set-theoretical interpretation is not necessary, but helpful
regarding the theorems we give later on.

The third theory of predication is a just slightly modified form of AP2.
We do not suppose the uniqueness condition within a predicational state-
ment:

AP3 ∀x∃y yεx & ∀x∀y(xεy ↔ (∃z zεx & ∀z(zεx → zεy)))

This condition within a predicational statement in the sense of AP2 is given
up here in the following way: To say that Iseult is beautiful is to say that
all entities that are Iseult are also one of the entities that are beautiful and
that there is at least one entity that is Iseult. According to such a theory
it is also adequate for predication to say of more than one entity that they
are also one of some other entities. So, e.g., [407] to say that Tris and Iseult
are beautiful is to say that all entities that are Tris and Iseult, that is Tris
and that is Iseult, are also one of the entities that are beautiful. Although
AP0 is already a consequence of AP3, we take for simplicity of notation
both formulas to be axioms of the third theory of predication. Analogue to
AP2 one can construct an adequate set theoretical semantics for AP3 if one
interprets ‘ε’ as non-empty inclusion (x 1+⊆1+ y iff x ⊆ y and x ̸= ∅).

The last theory of predication we introduce emerges if one keeps the
existence condition and weakens the inclusion condition within a predica-
tional statement in the sense of AP3 as follows:

AP4 ∀x∃y yεx & ∀x∀y(xεy ↔ ∃z(zεx & zεy))

Axiom AP4 is a very weak approach to predication and with respect to
predication in natural languages surely not adequate. To claim that Tris
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and Iseult are beautiful is certainly not the same as claiming that one of
them is also one of the entities that are beautiful, rather we are claiming
that both are beautiful. Nevertheless, from a sceptical point of view re-
garding translation and investigation of reference, if anything at all, then
AP4 seems to be acceptable as an adequate although not comprehensive
statement about predication. Consider, e.g., a native that shouts ‘gavagai’
and points to a rabbit. If she claims ‘gavagai ilhicha kano’, then we may
not be sure if she wants to say that all rabbits, the rabbit in front of us, the
ears of the rabbit in front of us etc. are beautiful. Nevertheless we seem to
be allowed for practical reasons to assume the very weak claim that some-
thing that is the ears of the rabbit in front of us or that is the rabbit itself
or that is all rabbits etc. is also something that is beautiful. Again, AP0 is
a consequence of AP4 but anyhow we take both formulas as axioms of the
fourth theory of predication. An adequate set theoretical semantics for AP4
can be constructed with the help of the concept of a connecting set (x ∩ ̸= ̸o y
iff there is a z such that z ∩ x ̸= ∅ and z ∩ y ̸= ∅). It is easy to see that
all concepts except of an empty concept can be brought into such a relation
and by this gavagaian predication is really completely obscuring reference.

To sum up: We have postulated axioms for four theories of predication:
the set theoretical, the Leśniewskian, a weakened Leśniewskian and a gav-
agaian theory of predication. It is easy to see that AP1, the specific axiom
of the set theoretical theory of predication, is logically independent of all
other specific axioms. One only has to substitute ‘∈’ for ‘ε’ in AP2, AP3 and
AP4 and sees that each of the substitution either is no theorem of set theory
or even contradicts it. Also AP2 and AP3 are logically independent. Only
AP2 and AP4 and AP3 and AP4 are logically connected as far as AP2 and
AP3 are consequences of AP4.

In figures 2–5 the different theories of predication are illustrated.
Whereas in singular predication each expression refers to exactly one ob-
ject, in Leśniewski’s theory of predication general expressions (predicates)
can refer plurally, whereas singular expressions (subject terms) always re-
fer singularly to objects. A weakened form of plural predication (figure 4)
allows also subject terms to refer plurally to objects. It is here where the in-
nocence thesis starts to make some sense: Replace, e.g., ‘Tris and Iseult’ by
‘The composition of all red things’ and replace ‘married’ by ‘all red things’,
then one may argue that the composition of all red things simply are/is all
[408] red things. Finally, gavagaian predication in figure 5 turns out to verify
a categoric statement if something that is the subject is also something that
is the universal.

Let us now state some properties of these theories of predication. While
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Tris and Iseult ared married.

{ }

Figure 2: Sg. predication: AP1

Tris and Iseult ared married.

{ }

Figure 3: Leśniewskian pred.: AP2

Tris and Iseult ared married.

Figure 4: Weakened L. pred.: AP3

Tris and Iseult ared married.

Figure 5: Gavagaian pred.: AP4

singular predication (AP1) is irreflexive and asymmetric, plural predica-
tion (AP2–AP4) is just not symmetric. Plural predication in the sense of
Leśniewski is also not reflexive, because it makes on his view no sense to
state of more entities that they are something. Plural predication in the
weakened version and in the gavagaian sense is reflexive:

T5 ∀x(xεx) (Reflexivity: AP3–AP4)

All forms of plural predication are transitive:

T6 ∀x∀y∀z(xεy & yεz → xεz) (Transitivity: AP2–AP4)

Each theory of predication is strong enough to build up a theory of identity.
For this purpose the classical definition of identity of set theory is sufficient:

DI1 x = y ↔ ∀z(zεx ↔ zεy)

It is clear that the so defined identity relation is an equivalence relation
according to all four theories of predication:

T7 ∀x x = x (Reflexivity: AP1–AP4)

T8 ∀x∀y(x = y → y = x) (Symmetry: AP1–AP4)
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T9 ∀x∀y∀z(x = y & y = z → x = z) (Transitivity: AP1–AP4)

With the help of AP0 and DI1 we can show that there holds also the prin-
ciple of indiscernibility of identicals with respect to predicational statements
for all four theories (‘φ[x]’ and ‘φ[x/y]’ can be substituted by any formula
built up of ‘ε’ and any expression that is definable with the help of ‘ε’ only):

T10 ∀x∀y(x = y → (φ[x] ↔ φ[x/y])) (Leibniz’ Law I: AP1–AP4
QED)

By providing reflexivity (T7) and indiscernibility (T10) definition DI1 based
on each theory of predication is strong enough for identity. That it is not
too strong, but exactly adequate, can be shown if one accepts a variant of
Leibniz’ law of the identity of indiscernibles as condition of adequacy: em-
bedded into the theories of predication it is stating that if all predicational
statements about x and y are equal in truth, then x and y are identical:

T11 ∀x∀y(∀z(xεz ↔ yεz) → x = y) (Leibniz’ Law II: AP1–AP4)

[409] Regarding plural predication people sometimes distinguish two
types of identity: identity between entities that are plurally referred to in
predication, as, e.g., used in the claim that Tris and Iseult are identical with
the lovers of the corresponding medieval epic. And identity between enti-
ties that are univocally referred to in predication, as, e.g., used in the claim
that Iseult is identical with King Mark’s wife. Our definition is also a com-
bination of both. Identity between plurals, sometimes also called ‘many-
many identity’, is as just given in DI1. Singular identity, sometimes also
called ‘one-one identity’ (cf. Baxter 1988a, p.577), comes in two variants:

T12 ∀x∀y(x = y ↔ ∀z(xεz ↔ yεz))
(One-One Identity I: AP1–AP4)

T13 ∀x∀y(x = y ↔ xεy & yεx) (One-One Identity II: AP3–AP4)

That there is no hybrid identity—sometimes also called ‘many-one identity’
(cf. Baxter 1988a, p.577)—is indicated by the following theorem:

T14 ∀x∀y(∃n
nz zεx & x = y → ∃n

nz zεy) for any n ≥ 1
(Identity is Non-Hybrid: AP1–AP4)

So, if some x that exactly n entities are is identical with y, then also exactly
n entities are y. That is especially: there is no identity relation between one
entity and many.

Up to now we have introduced four theories of predication:
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• {AP0,AP1,DI1}: the set theoretical theory of singular predication, in-
terpretable with the help of the element relation ∈.

• {AP0,AP2,DI1}: the Leśniewskian theory of plural predication, inter-
pretable with the help of the single inclusion relation 1⊆1+.

• {AP0,AP3,DI1}: the weakened Leśniewskian theory of plural predi-
cation, interpretable with the help of the non-empty inclusion relation
1+⊆1+.

• {AP0,AP4,DI1}: the gavagaian theory of plural predication, inter-
pretable with the help of the relation of being connectable by a set
∩ ̸= ̸o.

In the next section we will have a look on the interrelation between these
theories, mereology and the innocence thesis in OII. For brevity we make
reference to each theory of predication by its specific axiom only (AP1–
AP4). [410]

5 Mereology and Identification

All four theories of predication allow us separately to define basic mere-
ological concepts: ‘⪯’ for the relation of being a part, ‘≺’ for the relation
of being a proper part, ‘◦’ for the relation of overlapping and ‘A’ for being
uncomposed, that is being atomic. Here are the definitions:

DM1 x ⪯ y ↔ ∀z(zεx → zεy)

DM2 x ≺ y ↔ x ⪯ y & x ̸= y

DM3 x ◦ y ↔ ∃z(zεx & zεy)

DM4 A(x) ↔∼∃y(yεx & y ̸= x)

One may wonder about DM3 and DM4, inasmuch as we use the predica-
tion relation and not the parthood relation for the definitions. But the rea-
son for this is simple: According to AP1, ‘ε’ is interpreted as ∈ and hence
parthood defined in DM1 is understood as inclusion. If we had defined
overlapping and being atomic in DM3 and DM4 with the help of the part-
hood relation, then, because of the empty set, everything would overlap
everything and nothing would be atomic. Our definitions provide within
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AP1 the usual set theoretical counterparts of mereology: inclusion for part-
hood, proper inclusion for proper parthood, non-empty cut for overlap-
ping and being an urelement or an entity of type 0 for being atomic. That
for AP2–AP4 our definitions are as usual can be seen by the following the-
orems:

T15 ∀x∀y(∃z(zεx & zεy) ↔ ∃z(z ⪯ x & z ⪯ y)) (AP2–AP4)

T16 ∀x(∼∃y(yεx & y ̸= x) ↔∼∃y y ≺ x) (AP2–AP4)

The, in DM2 defined, relation of being a proper part bears the usual prop-
erties of a partial order:

T17 ∀x(x ̸≺ x) (Irreflexivity: AP1–AP4)

T18 ∀x∀y(x ≺ y → y ̸≺ x) (Asymmetry: AP1–AP4)

T19 ∀x∀y∀z(x ≺ y & y ≺ z → x ≺ z) (Transitivity: AP1–AP4)

As one can imagine, plural predication mostly coincides with parthood:

T20 ∀x∀y(xεy → x ⪯ y) (Predication implies Parthood: AP2–
AP4)

T21 ∀x∀y(x ⪯ y → xεy) (Parthood implies Predication: AP3–
AP4)

Up to now the mereological extension of the four theories of predication
were just definitional. That the definitional extensions are formally ade-
quate is mainly shown with the help of the theorems T17 and T19 on the
irreflexivity and transitivity of the proper parthood relation. The core of
all mereologies is not definitional and non-conservative axiomatic, namely
the principle of composition. Here it is:

AM1 ∀x∀y∀z(sum(x, y) = z ↔ ∀z1(z1 ◦ z ↔ (z1 ◦ x ∨ z1 ◦ y)))

Also for sum-formulas the Leibniz laws hold. It can be shown that the
creative part of this extension with respect to AP2–AP4 and the mereologi-
cal definitions DM1–DM4 is exactly the existence condition of composition
(uniqueness is already a consequence of DM3 and one of AP2–AP4): [411]

T22 ∀x∀y∃z∀z1(z1 ◦ z ↔ (z1 ◦ x ∨ z1 ◦ y))
(Creativity of Unrestricted Composition: AP1–AP4)
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This is to state for any two entities the existence of their composition. Be-
cause of this reason axiom AM1 is sometimes called ‘the principle of unre-
stricted composition’. Composition as defined here bears the usual proper-
ties, e.g. that the order while doing composition is irrelevant:

T23 ∀x∀ysum(x, y) = sum(y, x) (Commutativity: AP1–AP4)

T24 ∀x∀y∀zsum(sum(x, y), z) = sum(x, sum(y, z))
(Distributivity: AP1–AP4)

Or that there is no “hocus-pocus” in single composition:

T25 ∀xsum(x, x) = x (Innocence of Selfcomposition: AP1–AP4)

But, as some people would put it: is there also no “hocus-pocus” in general,
that is, as we would like to put it: holds the thesis OII? Well, it is easy to
figure it out: we use ‘M’ for the set containing the mereological definitions
DM1–DM4 and axiom AM1. It can be shown that:

T26 AP1∪M contradicts the thesis in OII. (QED)

T27 AP2∪M is compatible with the thesis in OII. (QED)

T28 AP3∪M is compatible with the thesis in OII. (QED)

T29 AP4∪M entails the thesis in OII. (QED)

There is even a stronger result: it can be shown that stating that the com-
position of x and y is identical with x and y (plurally referred to) forces one
to gavagaian predication:

T30 The union of {AP0,DI1}∪M and the thesis in OII entails
AP4. (QED)

The more general result concerns the question whether mereology is onto-
logically innocent within the identification approach. And our answer is:
well, it depends on your theory of predication. Using singular predication:
no, it is not. Using plural predication: yes, it is, but only if you have some
kind of gavagaian theory of plural predication.

Stating the thesis in OII is compatible with plural predication, but it
entails the very sceptical gavagaian theory. So let us have a look on the
second version of the innocence thesis and figure out, if stating only the
second version is less restrictive.
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6 Mereology and Counting

For all cases, except one, it is possible to construct a, between the composi-
tion and its parts, differentiating relationship. The only exceptional case is
the one assuming the existence of exactly one entity. Within this case there
is no differentiating relationship (T25). But for all other cases there is one,
e.g. that of being a part of one’s part, or not reflexively put: the relationship
of being an improper part of an atom. So, assuming the existence of exactly
two or more mereological atoms (e.g. ∃2

2xA(x)) and performing abstraction
with the help of the abstraction machinery of mereology is incompatible
with claiming that there exist two or more entities at all [412] (∃2

2xx = x).
Let us state this point even more explicitly (similar to our argument in the
characterisation of OII):

1. Assume the existence of exactly two atoms: ∃2
2xA(x)

2. And assume the innocence thesis within the counting ap-
proach (OIC).

3. According to the usual counting method the first assump-
tion is to be spelled out as ∃x∃y(x ̸= y & ∀z(A(z) ↔ z =
x ∨ z = y)).

4. By unrestricted composition (AM1) and the definition of being
uncomposed (DM4) it follows: ∃x∃y∃z z = sum(x, y) and
hence ∃z ∼A(z).

5. But then, because of 3. and 4., it holds: ∃x∃y∃z(x ̸= y & z ̸=
x & z ̸= y).

6. And this contradicts the claim that there are exactly two en-
tities at all which is according to the usual counting method
spelled out as ∃x∃y(x ̸= y & ∀z(z = x ∨ z = y)) and which
follows from 1. and 2..

Opponents of the innocence thesis blame assumption 2., that is the inno-
cence thesis within the counting approach, for the contradiction in 5. and
6.. Defenders of the innocence thesis refute 6. itself. But how can one ac-
cept both assumptions and yet refuse one of their consequences? It is just
by refuting an intermediate step, more precisely: by refuting the spelling
out with the help of the usual counting method.
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There are two main strategies of the defenders. One is to refute an ap-
plication of the usual counting method for counting entities per se and one
is to allow such an application, but apply within the innocence thesis OIC
an unorthodox method of counting. Let us have a short look on the first
strategy!

A motivating text passage for this strategy is the following one:

Consider the express check-out line in a grocery store. It says
‘six items or less’. You have a six-pack of orange juice. You
might well wonder if you have one item or six items. But you
would never hesitate to go into the line for fear of having seven
items: six cans of orange juice plus one six-pack. (Baxter 1988b,
p.200)

According to Donald L. M. Baxter there are different methods of counting
and if one ascribes ontological blameworthiness to mereology, then she is
mixing up these methods in an illegitimate way. There are many examples
for different methods of counting in everyday life. For mereology a dis-
tinction of counting atoms and counting composed entities is relevant. To
avoid troubles of counting composed entities that are parts of composed
entities, we will concentrate on counting composed entities that are only
parts of themselves. For this purpose we give a definition for such univer-
sal entities:

DM5 U(x) ↔∼A(x) & ∀y(x ⪯ y → x = y)

The method for counting atoms was already introduced in our argument
above (3.). Generally, for counting entities that have a property φ, we use
the following method:

∃n
nxφ[x] can be contextually defined by

∃x1 . . . ∃xn([&1≤i<j≤n xi ̸= xj] & [&1≤i≤n φ[xi]] &

∀y(φ[y] → [∨1≤i≤n y = xi])

As far as defenders of the innocence thesis with this strategy think that
it is counting entities twice if one counts both, the atomic and the com-
posed entities, they are [413] willing to reject each counting method that
counts atoms and universals together. So, e.g., they agree with setting up a
counting method for atoms (∃n

nxA(x)) and also with setting up a counting
method for universals (∃n

nxU(x)). But since counting selfidenticals (∃n
nxx =

x) is counting atoms and universals together (∀x(U(x) ∨ A(x) → x = x)
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is obviously logically valid), they reject this counting method. In this sense
OIC is vacuously true, insofar as mereology is compatible with counting
atoms; and counting selfidenticals is illegitimate and hence need not to be
considered in OIC.

This strategy may be seen as helpful in view of ordinary language dis-
course and as a good tool for making technical sense of some at first glance
pardoxical arguments. But of course it comes at high costs, namely giving
up the orthodox method of counting and that is giving up some parts of
classical logic. So it is more than desirable to find an alternative. Such an
account is given by the second strategy.

A hint for this strategy is to be found in the following citation:

Australia and New South Wales are not identical, but they are
not completely distinct from each other. They are partially iden-
tical, and this partial identity takes the form of the whole-part
‘relation’ [. . . ] Partial identity admits of at least rough-and-
ready degree. Begin with New South Wales and then take larger
and larger portions of Australia. One is approaching closer
and closer to complete identity with Australia. (cf. Lewis 1991,
pp.82f)

The main idea is that a composed entity is partially identical with each of
its proper parts and fully identical with all of them together. Partial iden-
tity is to be understood as overlapping inasmuch two entities x and y are
partially identical means that they have identical parts in common. One
can easily introduce a comparative concept of partial identity (x is more
partially identical with z than y as, e.g., used in ‘East-Australia is more
partially identical with Australia than New South Wales is.’) or even—as
indicated in the citation—a quantitative one (x is to the degree of n/m par-
tially identical with y as, e.g., used in ‘New South Wales is to the degree of
1/7 partially identical with Australia.’) by counting (atomic) parts, which
is no problem in the finite case. But for our purpose it is enough to stick to
the qualitative concept:

DM6 x =p y ↔ x ◦ y

Partial identity would suffice for defining the parthood relation and is also
a necessary condition for a theory of identity:

T31 ∀x∀y(x ⪯ y ↔ ∀z(z =p x → z =p y)) (Parthood: AP1–AP4)
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T32 ∀x∀y(x = y → ∀z(z =p x ↔ z =p y)) (Identity: AP1–AP4)

But of course partial identity is far away of being sufficient for a full the-
ory of identity: it is no equivalence relation as far as transitivity fails and
because of this also the principle of indiscernibility of identicals fails. Never-
theless one can make sense of partial identity for counting by providing a
counting method that advices one to [414] distinguish entities not strictly
but by partial non-identity, that is disjointness. One only has to substitute
‘=p’ for ‘=’ in the abstract counting method given above:

Ennxφ[x] can be contextually defined by
∃x1 . . . ∃xn([&1≤i<j≤n xi ̸=p xj] & [&1≤i≤n φ[xi]] &

∀y(φ[y] → [∨1≤i≤n y =p xi])

It is clear that two atoms are disjoint, that is, they are not partially identical:

T33 ∀x∀y(A(x) & A(y) & x ̸= y → x ̸=p y) (Atoms: AP1–AP4)

And because of this reason it is easy to show that applying the counting
method above within OIC is in favour of OIC:

T34 EnnxA(x) → Ennx x = x holds for all n ≥ 1 (OIC: AP1–AP4)

But one should note that this method of counting has a property that may
be seen as feature or paradoxical: By claiming that there exist exactly n
atoms in the mereological universe, with the help of the given counting
method one does not only claim that there exist n entities within the uni-
verse at all (T34), but one also claims that there exists exactly one entity
within the universe:

T35 EnnxA(x) → E11xx = x holds for all n ≥ 1
(Counting the Universal: AP1–AP4)

So, this counting method leads to the feature or paradox of stating the exis-
tence of exactly n entities (parts) while stating also the existence of exactly
one entity (“the parts counted as one thing”). Of course, dissolved accord-
ing to our definitions it is nothing more than stating that there are n fully
disjoint parts (atoms) while there is also one overall overlapping whole
(universal).

The question arises why one should see exactly in the method of count-
ing partially identicals as defined above the relevant method for count-
ing regarding ontological innocence. Why should one not accept, e.g., the
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method of counting maternally identicals as the relevant method for count-
ing, where x is maternally identical with y iff the mother of x is identical
with the mother of y? Here comes the so-called ‘weak composition thesis’
of Lewis into play:

Mereological relations [. . . ] are strikingly analogous to ordi-
nary identity. So striking is this analogy that it is appropriate
to mark it by speaking of mereological relations—the many-one
relation of composition, the one-one relations of part to whole
and overlap—as kinds of identity. Ordinary identity is the spe-
cial limiting case of identity in the broadened sense. (cf. Lewis
1991, p.83)

Lewis lists five respects in which he thinks that a striking analogy holds.
We skip the non-logical spatio-temporal analogy and consider only the first
four respects—assuming here the framework of free logic and assuming
that functional symbols are introducable into theories only by definition,
hence we assume that all theories include existence and uniqueness condi-
tions explicitly as axioms (cf. Lewis 1991, sect.3.6): [415]

(i) “just as it is redundant to say that x and y exist when x is
identical with y, so it is redundant to say that x and the ys
exist, when x is a fusion of the ys.”
1: Ex and x = y entails logically Ey
2: Ex, Ey and z = sum(x, y) entails mereologically Ez

(ii) “just as, given that x exists, it is automatically true that
something identical with x exists, so, given that the xs ex-
ist, it is automatically true that a fusion of the xs exists.”
1: Ex entails logically ∃y(x = y & Ey)
2: Ex, Ey entails mereologically Esum(x, y)

(iii) “just as there cannot be two things both of which are identi-
cal with x, so there cannot be two things both of which are
fusions of the xs. There is something analogous to the tran-
sitivity of identity in this feature of composition.”
1: x = z and y = z entails logically x = y
2: x = sum(z, w) and y = sum(z, w) entails mereologically
x = y

(iv) “just as fully to describe x is fully to describe the object that
is identical with x, so fully to describe the xs is fully to de-
scribe their fusion.”
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1: φ[x] and x = y entails logically φ[x/y], where φ[x] is to
be taken a representation of a full description of x
2: For establishing the analogical part within mereology, it
seems to be necessary to qualify the statement, as e.g. Peter
van Inwagen did by “[. . . so fully to describe the xs is] fully
to describe the distribution of local properties [within their
fusion].” (cf. Inwagen 1994, p.218):
φ[x], ψ[y] and z = sum(x, y) entails mereologically ∀w(w ≺
z → φ[x/w] ∨ ψ[y/w])

Analogies, perhaps would be striking for the project of weakening the the-
ory of identity (as standards for ontological innocence) if there were no
other theories that satisfy the analogies and are nevertheless clearly not ac-
ceptable for such standards. But as, e.g., Byeong-Uk Yi has shown, there are
other theories satisfying these analogies which nevertheless are clearly not
acceptable for standards of ontological innocence. One may take as exam-
ple the accompaniment theory of Yi that satisfies the same structural claims
as above—e.g., it is also redundant to say that x and y exists, when y ac-
companies x—but no one would accept the accompany-relation as a logical
relation that resembles identity (cf. Yi 1999, pp.150ff). And for this reason
Lewis’ approach to single out some mereological relations as relevant for
the innocence thesis in OIC seems to be inadequate.

7 Conclusion

Although the mereological composition principle may be a handy tool for
categorisation, we have seen that the counter-arguments against an unre-
stricted composition principle cannot be overcome by simply stating an
innocence thesis. Regarding the underlying theory of reference and predi-
cation there are four options available to argue for such a thesis: [416]

sg. predication pl. predication

sg. quantification FO (AP1) ε-theory (AP2–AP4)

pl. quantification Distributive MSO Non-distributive MSO

Regarding FO (first-order logic) none of the innocence theses introduced
in section 2 is consistent. Distributive MSO (monadic second order logic)
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is too weak to embed mereology. Non-distributive MSO is ontologically
blameworthy since it allows for the reconstruction of a bulk of set theory.
And plural predication (ε) in the tradition of Leśniewski can be made fruit-
ful for the innocence theses only if it is some kind of gavagaian predication,
i.e. predication that completely obscures reference. Therefore, in order
to keep the principles of classical predication and logical counting one is
forced to give up the theses on the ontological innocence of mereology.
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Technical Appendix

Every fusion of a finite number of individuals a1, . . . , an is due to commu-
tativity and distributivity of sum easily performable by an iterative appli-
cation of the two-placed composition operation. For the infinite case one
would just need to add a name-forming operator Σx similar to the iota-
operator for descriptive descriptions. One may then define possibly infinite
fusions contextually by Σxφ[x] = y ↔ ∀z(z ◦ y ↔ φ[x]).

In the following proofs we make use of Boolos’ result that PFO can be
embedded into monadic second order logic (MSO) and vice versa with the
following one-one mapping tr (cf. Linnebo 2003, p.74):

• tr (x ⊏ xx) = X(x)

• tr (∼φ) =∼tr (φ), tr (φ & ψ) = tr (φ) & tr (ψ), . . .

• tr (∃xφ[x]) = ∃xtr (φ[x]), tr (∀xφ[x]) = ∀xtr (φ[x])

• tr (∃xxφ[xx]) = ∃Xtr (φ[xx]), tr (∀xxφ[xx]) = ∀Xtr (φ[xx])

To shorten MSO proofs we also make use of the result that MSO can be
embedded into restricted Zermelo set theory, also called ‘monadic second
order Zermelo set theory’, consisting of five axioms: extensionality, pairing,
power set, union, infinity and separation (the latter is the only monadic
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formula: ∀X∀x∃y∀z(z ∈ y ↔ (z ∈ x & X(z)))). For details see (Pollard
2015, chpt.VII.2–4).

Proof.

• Proof of T1: By definition PFO7 and the translation manual tr we get:
tr (∀xx∀yy∃1

1zz∀zz1(zz1□zz ↔ (zz1□xx ∨ zz1□yy))) is logically equivalent
to ∀X∀Y∃1

1Z∀Z1(∃x(Z1(x) & Z(x)) ↔ ∃x(Z1(x) & (X(x) ∨ Y(x)))).
The [417] uniqueness claim (∃1Z . . . ) follows immediately by transi-
tivity of the biconditional (↔). By restricted monadic second order
comprehension (instantiation: ∃Z∀x(Z(x) ↔ (X(x) ∨ Y(x)))) we get
∃1Z . . . .

• Proof of T2: By definitions PFO7 and PFO8 and tr one has to prove
that ∀Z1(∃x(Z1(x) & Z(x)) ↔ ∃x(Z1(x) & (X(x) ∨ Y(x)))) is equiv-
alent to ∀x(Z(x) ↔ (X(x) ∨ Y(x))). The step from the latter to the
former is up to applying finally PFO2 for generalizing Z1 completely
FO. A set-theoretical translation of the former would be: z1 ∩ z ̸= ∅ iff
z1 ∩ (x ∪ y) ̸= ∅, therefore z1 ∩ z = ∅ iff z1 ∩ (x ∪ y) = ∅ (for all z1).
Now, suppose z ̸= x ∪ y. Then there is an a ∈ z which is not in x ∪ y:
a ̸∈ x ∪ y (or the other way round: a ∈ x ∪ y, but a ̸∈ z). Let z1 = {a}.
Then z1 ∩ z = {a}, whereas z1 ∩ (x ∪ y) = ∅ in contradiction to the
equivalence above (similarly for the other case). Hence z = x ∪ y,
which can be translated back to ∀x(Z(x) ↔ (X(x) ∨ Y(x))).

• Proof of T3: By definitions PFO7 and PFO8 and tr one has to
prove (∃n

nxX(x) & ∃m
my(Y(y) & ∼ X(y))) ↔ ∃Z∃n+m

n+mz(Z(z) ↔
∀Z1(∃w(Z1(w) & Z(w)) ↔ ∃w(Z1(w) & (X(w) ∨ Y(w))))) which
can be translated further into the monadic second order Zermelo set
theoretically valid cardinality claim: |x| = n and |y \ x| = m iff
|z| = |x ∪ y| = n + m.

• Proof of T4: Follows immediately from T3 by the extra condition: For
all x holds: x ∈ X ∪ Y.

• Correctness of ε in AP2 interpreted as 1⊆1+ (x 1⊆1+ y iff x ⊆ y and
|x| = 1): One just has to prove that the following statements as set-
theoretically valid: for all x exists a y: y 1⊆1+ x; for all x and all y: If
x 1⊆1+ y, then there exists a z such that z 1⊆1+ x, and for all z1, z2:
If z1 1 ⊆1+ x and z2 1 ⊆1+ x, then z1 1 ⊆1+ z2; furthermore: For all
z: If z 1⊆1+ x, then z 1⊆1+ y. The existence of a singleton-subset is
guaranteed by the power set axiom. Regarding the equivalence: (⇒)
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Assume x 1⊆1+ y. Then we know |x| = 1 and by this x 1⊆1+ x, hence:
There is a z: z 1⊆1+ x; since |x| = 1 we also get by extensionality that
the element(s) of a singleton-subset of x are/is unique. And by tran-
sitivity of 1⊆1+ we arrive at the inclusion condition. (⇐): Assume
(i) there is a z such that z 1⊆1+ x, (ii) for all z1, z2: If z1 1⊆1+ x and
z2 1⊆1+ x, then z1 1⊆1+ z2, (iii) for all z: If z 1⊆1+ x, then z 1⊆1+ y.
Now assume that x 1 ̸⊆1+ y. Then there are three cases to be consid-
ered: x ̸⊆ y or |x| ̸= 1 or y = ∅. But by (i) we know that |x| ≥ 1 and
hence by (iii) we get: y ̸= ∅. Furthermore, take x to be {x1, x2, . . . }.
By (ii) we get: x1 = x2, x1 = x3, . . . . Hence |x| = 1. But now we also
get by (iii) that x 1⊆1+ y, hence x ⊆ y. So x 1⊆1+ y in general. (Cor-
rectness for AP0 is straightforward: z 1⊆1+ x exactly when z 1⊆1+ y
for any z implies x 1⊆1+ z exactly when y 1⊆1+ z for any z and vice
versa.)

• Correctness of ε in AP3 interpreted as 1+⊆1+ (x 1+⊆1+ y iff x ⊆ y
and x ̸= ∅): Proof analogous to the correctness proof above (without
making assumption (ii)).

• Correctness of ε in AP4 interpreted as ∩ ̸= ̸o (x ∩ ̸= ̸o y iff there is a z such
that z ∩ x ̸= ∅ and z ∩ y ̸= ∅): One just has to prove that: There is a z
z∩ x ̸= ∅ and z∩ y ̸= ∅ iff there is a z such that there is a z1 z1 ∩ z ̸= ∅
and z1 ∩ x ̸= ∅, and there is a z2 such that z2 ∩ z ̸= ∅ and z2 ∩ y ̸=
∅. (⇒): Follows immediately by iteration and piecewise existential
generalization. (⇒): [418] Assume that x and y are connected via
z1 and z2 respectively to z. Then x and y are connected directly via
z1 ∪ z2 and hence there is a z connecting x and y (x ∩ (z1 ∪ z2) ̸= ∅ ̸=
y ∩ (z1 ∪ z2)). (Correctness regarding AP0 is due to the symmetry of
the connectable-relation.)

• Proof of T5–T9: Straightforward FO (regarding AP1: set-theoretical).

• Proof of T10: Since the only primitive expressions are ε and (later on
in section 5) sum—all the other notions =, ⪯, ≺ etc. are introduced
by definitions alone—for proving the indiscernibility of identicals we
have to consider only formulas that contain ε and sum as non-logical
expressions. We do so by induction on the complexity of formulas:
Assume x = y is valid in the theory, i.e. by definition DI1: ∀z(zεx ↔
zεy) is valid in the theory. Then we have to consider the following
inductive basis (degree of complexity of φ is 0): φ[x] is valid and of
the form:
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1. z1εz2: In this case the substitution is idle, hence φ[x] = φ[x/y]
and hence φ[x] ↔ φ[x/y] is valid.

2. xεz1: By AP0 we get xεz1 ↔ yεz1 and by this also yεz1.

3. z1εx: With DI1 we get immediately z1εy.

4. xεx: With DI1 we get yεy ↔ yεx; with AP0 we get xεx ↔ yεx,
and hence yεy.

5. xεy or yεx: Cf. case 4 (xεy[x/y] = yεy = yεx[x/y]).

6. sum(x, z1)εz2: By AM1 and DM3 we get zεz2 ↔
∀z3(∃z4(z4εz3 & z4εz) ↔ ∃z4(z4εz3 & (z4εx ∨ z4εz1))); by
the result on case 3 we get zεz2 ↔ ∀z3(∃z4(z4εz3 & z4εz) ↔
∃z4(z4εz3 & (z4εy ∨ z4εz1))) and hence by DM3 and AM1
sum(y, z1)εz2.

7. All the other cases of sum in φ are either analogous to 6 or fol-
low immediately from basic features of sum (commutativity, dis-
tributivity, selfcomposition: T23–T25).

The induction step is straightforward FO.

• Proof of T11–T25: Straightforward FO.

• Proof of T26: Take the following model: x = 1, y = 2. Then, by
AP1 and AM1, we get z = sum(x, y) = {1, 2}. According to OII
z = sum(x, y) iff x ∈ z, y ∈ z and for all z1 ∈ z: z1 ∈ x or z1 ∈ y.
But, although x ∈ sum(x, y), neither x ∈ x nor x ∈ y (if it were the
case that x ∈ y, then sum(x, y) = y and by this it wouldn’t be the case
that x ∈ sum(x, y)). W.l.o.g. this holds for any model whose domain
contains at least two objects. So OII and AP1 are incompatible in case
that there are at least two objects.

• Proof of T27: Since both, AP2 and OII are consequences of AP4 and
AP4 is consistent (see below), it follows also that AP2 and OII are
consistent.

• Proof of T28: Analogous to the proof of T27.

• Proof of T29: (That AP2 and AP3 follow from AP4 is straightforward
FO.) The proof of OII by help of AP4 and M is a quite long, but can be
verified, e.g., by an automatic FO-prover (used here: Prover9). Using
all the definitions the problem reduces to:

– From AP4: ∀x∃y yεx & ∀x∀y(xεy ↔ ∃z(zεx & zεy)), and [419]
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– the creative part of M (translation of T22):
∀x∀y∃z∀z1(∃z2(z2εz1 & z2εz) ↔ ∃z2(z2εz1 & (z2εx ∨ z2εy)))

– follows OII—translated as: ∀x∀y∀z((xεz & yεz & ∀z1(z1εz →
(z1εx ∨ z1εy))) ↔ ∀z1(∃z2(z2εz1 & z2εz) ↔ ∃z2(z2εz1 & (z2εx ∨
z2εy)))).

Also AP4 and M are consistent which is easily verifiable (used
here: Mace4). Here is the relevant input and output for Prover9 and
Mace4 (for the proof the programme ran about 20min on an ordinary
machine):
%Assumptions:

%AP4

((all x(exists y(E(y,x))))&(all x(all y(E(x,y)<->(exists

z(E(z,x)&E(z,y)))))))

&

%DM3: O for overlapping

(all x(all y(O(x,y)<->(exists z(E(z,x)&E(z,y))))))

&

%DI1

(all x(all y(I(x,y)<->(all z(E(z,x)<->E(z,y))))))

&

%AM1: S for sum (existence and uniqueness are built in)

((all x(all y(all z(S(x,y,z)<->(all z1(O(z1,z)<-

>(O(z1,x)—O(z1,y))))))))&(all x(all y(exists z(S(x,y,z)&(all

z1(S(x,y,z1)->I(z1,z))))))))

.

%

%

%Goals:

%OII

(all x(all y(S(x,y,z)<->((E(x,z)&E(y,z))&(all z1(E(z1,z)-

>(E(z1,x)—E(z1,y))))))))

.

• Proof of T30: Similar reduction and method as used above:

– From OII—translated as above—, and

– the creative part of M (translation of T22)

– follows AP4.
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So, it turns out that under the assumption of unrestricted mereologi-
cal composition OII and AP4 are equivalent, i.e. unrestricted compo-
sition and OII enforces gavagaian predication.

• Proof of T31–T35: Straightforward FO. Regarding T35 note that the
not dissolved way of counting (by distinguishing only disjunct ob-
jects) is paradoxical but can be made coherent by adding to the ba-
sis case of the contextual definition for Enn the condition that the
entity under consideration is atomic. I.e.: For [420] E11xφ[x] use
∃x(A(x) & φ[x] & ∀y(φ[y] → y =p x)). But then one cannot claim any
more that the “whole is the many counted as one”. Also the question
why counting disjuncts and not, e.g., maternally identicals remains.

Some formulations of the assumptions and theorems in the language of
Prover9/Mace4:
%%%%%%%%%%%%%%%%%%%%%%%%

%AP0

(all x(all y((all z(E(z,x)<->E(z,y)))->(all z(E(x,z)<->E(y,z)))))).

%AP2

((all x(exists y(E(y,x))))&(all x(all y(E(x,y)<->(((exists z(E(z,x))&(all

z(E(z,x)->E(z,y))))&(all z1(all z2((E(z1,x)&E(z2,x)->E(z1,z2))))))))))).

%AP3

((all x(exists y(E(y,x))))&(all x(all y(E(x,y)<->((exists z(E(z,x)))&(all

z(E(z,x)->E(z,y)))))))).

%AP4

((all x(exists y(E(y,x))))&(all x(all y(E(x,y)<->(exists z(E(z,x)&E(z,y))))))).

%%%%%%%%%%%%%%%%%%%%%%%%

%DI1

(all x(all y(I(x,y)<->(all z(E(z,x)<->E(z,y)))))).

%DM1: M for improper part

(all x(all y(M(x,y)<->(all z(E(z,x)->E(z,y)))))).

%DM2: P for proper part

(all x(all y(P(x,y)<->(M(x,y)&-I(x,y))))).

%DM3: O for overlapping

(all x(all y(O(x,y)<->(exists z(E(z,x)&E(z,y)))))).
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%DM4: A for atom

(all x(A(x)<->-(exists y(E(y,x)&-I(y,x))))).

%DM5: U for universal

(all x(U(x)<->(-A(x)&(all y(M(x,y)->x=y))))).

%[421] AM1: S for sum (existence and uniqueness are built in)

((all x(all y(all z(S(x,y,z)<->(all z1(O(z1,z)<->(O(z1,x)—O(z1,y))))))))&(all

x(all y(exists z(S(x,y,z)&(all z1(S(x,y,z1)->I(z1,z)))))))).

%%%%%%%%%%%%%%%%%%%%%%%%

%OII

(all x(all y(S(x,y,z)<->((E(x,z)&E(y,z))&(all z1(E(z1,z)-

>(E(z1,x)—E(z1,y))))))))

%OIC

(exists x(exists y(exists z(((((((-I(x,y)&-I(x,z))&-

I(y,z))&A(x))&A(y))&A(z))&(all z1(A(z1)->((I(z1,x)—I(z1,y))—I(z1,z)))))))))

%%%%%%%%%%%%%%%%%%%%%%%%

%T5

(all x(E(x,x)))

%T6

(all x(all y(all z((E(x,y)&E(y,z))->E(x,z)))))

%T7

(all x(I(x,x)))

%T8

(all x(all y(I(x,y)->I(y,x))))

%T9

(all x(all y(all z((I(x,y)&I(y,z))->I(x,z)))))

%T11

(all x(all y((all z(E(x,z)<->E(y,z)))->I(x,y))))

%T12

(all x(all y(I(x,y)<->(all z(E(x,z)<->E(y,z))))))

%T13

(all x(all y(I(x,y)<->(E(x,y)&E(y,x)))))

%T14

(all x(all y((I(x,y)&(exists z1(exists z2(exists z3(((((((-I(z1,z2)&-

I(z1,z3))&-I(z2,z3))&E(z1,x))&E(z2,x))&E(z3,x))&(all z4(E(z4,x)-

>((I(z4,z1)—I(z4,z2))—I(z4,z3))))))))))->(exists z1(exists z2(exists z3(((((((-

I(z1,z2)&-I(z1,z3))&-I(z2,z3))&E(z1,y))&E(z2,y))&E(z3,y))&(all z4(E(z4,y)-
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>((I(z4,z1)—I(z4,z2))—I(z4,z3))))))))))))

%[422] T15

(all x(all y((exists z(E(z,x)&E(z,y)))<->(exists z(M(z,x)&M(z,y))))))

%T16

(all x(-(exists y(E(y,x)&-I(x,y)))<->-(exists y(P(y,x)))))

%T17

(all x(-P(x,x)))

%T18

(all x(all y(P(x,y)->-P(y,x))))

%T19

(all x(all y(all z((P(x,y)&P(y,z))->P(x,z)))))

%T20

(all x(all y(E(x,y)->M(x,y))))

%T21

(all x(all y(M(x,y)->E(x,y))))

%T22

(all x(all y(exists z(all z1(O(z1,z)<->(O(z1,x)—O(z1,y)))))))

%T23

(all x(all y(all z(S(x,y,z)<->S(y,x,z)))))

%T24

(all x(all y(all z(all z1(all z2(all z3(((S(x,y,z1)&S(z1,z,z2))&S(y,z,z3))-

>S(x,z3,z2))))))))

%T25

(all x(S(x,x,x)))

%T31

(all x(all y(M(x,y)<->(all z(O(z,x)->O(z,y))))))

%[423] T32

(all x(all y(I(x,y)->(all z(O(z,x)<->O(z,y))))))

%T33

(all x(all y(((A(x)&A(y))&-I(x,y))->-O(x,y))))

%%%%%%%%%%%%%%%%%%%%%%%%
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